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We consider minimum-cost spanning trees, both in lattice and Euclidean models, in d dimensions. For the
cost of the optimum tree in a box of size L, we show that there is a correction of order L�, where ��0 is a
universal d-dependent exponent. There is a similar form for the change in optimum cost under a change in
boundary condition. At nonzero temperature T, there is a crossover length ��T−�, such that on length scales
larger than �, the behavior becomes that of uniform spanning trees. There is a scaling relation �=−1/�, and we
provide several arguments that show that � and −1/� both equal �perc, the correlation length exponent for
ordinary percolation in the same dimension d, in all dimensions d�1. The arguments all rely on the close
relation of Kruskal’s greedy algorithm for the minimum spanning tree, percolation, and �for some arguments�
random resistor networks. The scaling of the entropy and free energy at small nonzero T, and hence of the
number of near-optimal solutions, is also discussed. We suggest that the Steiner tree problem is in the same
universality class as the minimum spanning tree in all dimensions, as is the traveling salesman problem in two
dimensions. Hence all will have the same value of �=−3/4 in two dimensions.

DOI: 10.1103/PhysRevE.72.036114 PACS number�s�: 89.75.Fb

I. INTRODUCTION

Minimum spanning trees are a problem of combinatorial
optimization �1,2�. Suppose we are given an undirected con-
nected graph G, with vertex set V and edge set E, and a cost
�or weight, or “length”� �ij assigned to each edge �ij��E
�where i, j�V�. The problem is to find a spanning tree T
�i.e., a connected subgraph of G that includes all vertices in
V, but whose edges form no cycles; such a tree must have
�V�−1 edges�, such that the total cost of the edges in T,

� = 	
�ij��T

�ij , �1�

is as small as possible. Thus the minimization is over the set
T of spanning trees in G.

In this paper we are interested in the case in which G is a
simply connected portion � of a regular lattice in d�1 di-
mensions �with edges connecting nearest-neighbor lattice
vertices only; the nearest-neighbor distance is fixed at 1
throughout this paper�, including the case when � tends to
the entire lattice, and the edge costs are independent, identi-
cally distributed random variables, for example �ij uniformly
distributed on �0, 1�. We will also consider geometries with
periodic boundary conditions, in which � has no boundary.
The results also apply without significant modification to
cases with other distributions, and/or with short-range corre-
lations of the �ij’s, and to the Euclidean minimum spanning
tree, in which N= �V� points are distributed independently and
uniformly �with density 1� in a portion � of d-dimensional
Euclidean space, and the cost of an edge �ij� is the Euclidean
distance between i and j, for any pair i� j.

The motivation for this work is to understand disordered
systems at low temperatures better, beginning with those in
which quantum-mechanical effects are negligible. Here “dis-
ordered” means that the Hamiltonian �or energy as a function
of the system configuration� contains random variables, and
the minimum energy must be found for fixed �or

“quenched”� values of these random variables. Such systems
include classical Ising spin glass models. There is a great
deal of overlap between this field and that of random opti-
mization, including some common models �3�. There is even
a strongly disordered spin-glass model that maps onto mini-
mum spanning trees �4�. The results in this paper can be
considered as a rare case in which some exact results �or
exact mapping to another problem� can be found for a fairly
natural system with quenched disorder.

The questions of interest here include the dependence of
the total cost of the minimum spanning tree �MST� on the
size of the system �, and on certain changes of boundary
conditions to be defined below. The expectation value of the
cost �OPT of the MST is expected to take the form �overlines
denote the average over all �ij�

�OPT � 	
i=0

d

�iVdi
+ �̄fin �2�

asymptotically as the size of �→�, keeping the shape fixed
�5�. Here �i are nonuniversal constants �the values of which
will change if the �ij’s are correlated, or for the Euclidean
problem�, and Vdi

are di=d− i-dimensional volumes of � and
its boundary. That is, Vd= �V� is the d-dimensional volume of
�, Vd−1 is the d−1-dimensional “area” of the boundary, Vd−2
is the d−2-dimensional “length” of the edges of the bound-
ary, …, down to V0, the number of zero-dimensional corners
of �. �0=� has been extensively studied �see, e.g., Ref. �2�
for a review�, while bounds on �1 have been established in
d=2 �Ref. �6� for the Euclidean case�. The most interesting

part is the subsequent terms �̄fin, the leading corrections to
the bulk part of the cost in a finite-size system. These are
shape dependent, and may be difficult to separate from the

term �dV0, since as we will see �̄fin can be of order 1 for the
MST. Here for simplicity we will take � in the form of a
hypercube of side L, with periodic boundary conditions �so
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all Vdi
with i	0 are zero�. Then we find as L→� �5�

�̄fin � − �̃c + 
�L�. �3�

Here �̃c is the �nonuniversal� value of the cost of an edge at
the percolation threshold, that is the stage in Kruskal’s
greedy algorithm �7,1� at which the growing trees percolate
across the system, for L→�; in the above model of �ij uni-

formly distributed in �0, 1�, �̃c= pc, the threshold for bond
percolation. Also, 
� is a d-dependent nonuniversal constant.
We will argue that �i� � is universal �but depends on d�, �ii�
��0 for all d, and �iii� in fact

� = − 1/�perc, �4�

where �perc is the correlation length exponent for classical
percolation in d dimensions. It is known that �perc=1�d=1�,
4 /3�d=2�, and �perc=1/2 for d�dc, where dc is a critical
dimension, dc=6 for percolation; there are approximate val-
ues for �perc for other intermediate d.

We also consider the effect of a change in boundary con-
ditions. We can study the mean change in optimum cost pro-
duced when a constraint, that the tree must possess at least k
distinct branches that cross between two ends of the system,
for example, between the ends of a cylinder of length L �in
one direction� and width W �in d−1 directions�, is imposed.
We argue that the mean change in cost per unit length scales
as

lim
L→�

�OPT�k� − �OPT

L
� 
k�W

�−1, �5�

as W→�, for all dimensions d, again with �=−1/�perc.
These finite-size corrections to the mean cost, and its sen-

sitivity to boundary conditions, are analogous to those for the
ground-state energy of disordered classical systems, such as
spin glasses �8,9�, and the application of such ideas to opti-
mization was begun in Ref. �10�. It was previously argued
�11� for the traveling salesman problem that similar forms
hold in d=2 with � replaced by 0 �and with L� in �OPT
replaced by a logarithm in some cases�, and should also hold
for MSTs. It now appears that the coefficient 
 of those
terms �11� is zero, at least for MSTs.

The size-dependent terms in �OPT are related to the
nonzero-temperature behavior of weighted spanning trees. In
this, we give each spanning tree a �Boltzmann-Gibbs� prob-
ability proportional to e−�/T, where T is the temperature. The
probabilities are normalized by dividing by the partition
function

Z = 	
T�T

�
�ij��T

e−�ij/T. �6�

In the limit as T→0, the sum over trees is dominated by
those with the lowest total cost �. This approach allows
methods of equilibrium statistical mechanics to be applied.
We argue that at a small positive temperature, the entropy per
vertex in the limit as the size of � tends to infinity, s �essen-
tially the logarithm of the number of near-optimal spanning
trees accessible at temperature T, divided by �V�� behaves as

s � aT�, �7�

as T→0, where � is another universal exponent, most likely
equal to 1 for MSTs �this has also been discussed in Ref.
�12��. Correspondingly, ��, the change in the thermal �as
well as �ij� average cost per vertex relative to the optimum,
is

�� = lim
�V�→�

��� − �OPT

�V�
� bT�+1. �8�

For a large system, �� is the thermal and �ij average of the
notion of “fractional relative error” in optimization theory,
within a factor of �0. Inverting these formulas implies that
the logarithm of the typical number of spanning trees with
cost within a factor 1+ of �OPT �where “typical” can be
made precise using the Boltzmann-Gibbs probability�, di-
vided by �V�, is

s � a��/��+1� �9�

as →0. Note that these formulas are for the limit �V�→�
before T→0; the arguments that suggest that �=1 also sug-
gest that s and �� are dominated by local, independent ex-
citations, with a density of order 1 /T�, and so there is a
length scale �T�T−1/�d�� such that these results hold for sys-
tem size L��T.

In addition to the cost, one may also ask about correlation
properties of the trees, either at T=0 �i.e., for MSTs�, or in
the positive-T generalization. For example, one may consider
the expected number of trees that possess k distinct branches
that cross between two balls separated by distance r, as a
function of r, and so define correlation exponents �see, e.g.,
�13,14��. Another exponent is obtained from the Hausdorff
dimension of the path between two given points on the
�same� tree. These universal exponents serve to distinguish
universality classes. One may ask whether the exponents for
the statistics of the MSTs are the same as for uniform span-
ning trees. Uniform spanning trees �USTs� arise if we set all
�ij =0, or put T=�, in the positive-temperature weighted
spanning trees. Thus every spanning tree has equal �“uni-
form”� Boltzmann-Gibbs probability. We will argue the fol-
lowing: nonzero temperature is a relevant perturbation �in
the renormalization-group sense� and leads to a correlation or
crossover length � ����T for d	1�, such that for correlation
functions over distances much larger than �, the behavior of
USTs is recovered, even if T is very small. In an infinite
system, this length diverges as

� � cT−� �10�

as T→0. We argue, using results from the extensively stud-
ied related problem of random �classical� resistor networks
�RRNs�, which again is related to percolation, that �=�perc
=−1/�. That is, −� is the scaling dimension for the tempera-
ture T.

These results then imply that if we choose a typical span-
ning tree with � within about 1+ of �OPT, then its statistical
properties on length scales larger than � are those of USTs.
The crossover length scale is ��c�−�/��+1�. When � is of
order the system size L, or on length scales smaller than �,

N. READ PHYSICAL REVIEW E 72, 036114 �2005�

036114-2



the correlations are those of MSTs, which should be different
from those of USTs, at least in high dimensions d. Argu-
ments by Newman and Stein �4� �NS� show that for MSTs,
for d	8 the MST in any finite portion of size W of the
system breaks up, as ���→�, into of order Wd−8 trees of size
of order W, each tree having Hausdorff dimension 8 �their
arguments also used a relation with percolation�. Thus 8 is a
critical dimension for MSTs, above which the exponents
mentioned above take simple values, related to the Hausdorff
dimension 8 that determines the k-crossing exponents, while
�by a simple extension of the arguments of NS� the Haus-
dorff dimension of the path between two points becomes 2,
as for a Brownian walk. By contrast, USTs have similar be-
havior, but consist of trees of Hausdorff dimension 4 for
dimension bigger than 4 �15�. However, a relation between
the two in low dimensions, in particular d=2, has not been
ruled out, and exists, albeit somewhat trivially, in d=1.

It is interesting that the properties of MSTs fall into two
parts. For properties involving the costs, the critical dimen-
sion is argued here to be dc=6. On the other hand, the geo-
metric correlations of the trees themselves exhibit a critical
dimension of 8. We note that the costs are independent of the
tree geometry in the sense that, given the MST, the costs of
the edges used cannot be recovered �in the lattice models
though this can be done in the Euclidean case�. In the ab-
sence of a field theoretic formulation, analogous to that for
equilibrium positive-T critical phenomena, the presence of
two distinct critical dimensions should not seem so surpris-
ing.

This paper is structured as follows. Section II considers
the MST problem, and its nonzero temperature generaliza-
tion, for large systems. The main results of this section are
the exponent for the crossover length �, �=�perc, and the
behavior of the entropy and mean cost �per vertex� at low
temperature. In Sec. III A, aspects of finite-size systems are
considered, first for zero temperature �MSTs�. Using finite-
size scaling arguments for percolation, the two corrections in

�̄fin are obtained. The change in cost produced by a change in
boundary condition on a long cylinder is considered in Sec.
III B. Finally, scaling at both finite size and positive tempera-
ture is considered. Section IV considers other optimization
problems, including minimum cost Steiner tree, traveling
salesman, and minimum weighted matching. Some of these
are argued to be in the same universality class as MSTs.

II. MSTS, RRNS, AND PERCOLATION

This section begins with a mapping of the general
weighted spanning tree problem to the calculation of a deter-
minant of a Laplacian matrix on G. The resulting linear-
algebra problem is related to other problems of physical in-
terest, including RRNs. This problem is then solved as T
→0, and related to Kruskal’s greedy algorithm and to a class
of corresponding percolation problems. At nonzero tempera-
ture, the connection with RRNs gives the behavior �as T
→0� of the crossover length � to uniform spanning tree be-
havior at large length scales. The entropy and mean extra
cost �per vertex� are considered next, and related to the num-
ber of near-optimal spanning trees. Finally some comments

on the mobility edge in the lattice Laplacian are made, in the
strong disorder regime T→0.

A. Mappings between problems

The partition function Z can be reformulated as a deter-
minant by the matrix-tree theorem extended to include
weights Kij =e−�ij/T �16�,

Z = det� � , �11�

where det� denotes the determinant of a matrix, from which
any one row and the corresponding column have been de-
leted, and �=NKNt is defined as follows. N is the incidence
matrix of G viewed as a directed graph by adding an arrow
to every edge in an arbitrary fashion; then for vertices i and
edges e,

N�i,e� = 
0 if i is not on e ,

1 if i is the head of e ,

− 1 if i is the tail of e .
� �12�

Nt denotes the transpose of N, and K is the diagonal �E�
� �E� matrix with entries K�e ,e�=Kij =e−�ij/T for the edge e
= �ij�.

The matrix �=NKNt can be regarded as a Laplacian on
G. It has a zero mode, the vector �1,1 , . . . ,1�t, and is positive
semidefinite �if all �ij /T are real�, as can be seen by writing
N�=NK1/2, and �=N�N�t. The deletion of a row and column
from � before calculating the determinant removes the zero
mode, which would otherwise cause the determinant to van-
ish.

Now we suppose, as in the Introduction, that the graph G
is a portion � of a d-dimensional lattice, and that the costs
are random variables. Then there are some physical problems
that can be associated with the mathematical system defined
by �. For example, consider the eigenvalue problem for the
matrix �,

�v = 
v . �13�

This is similar to the problem of finding the eigenfrequencies
±�
 for a collection of unit masses connected by springs
with random spring constants Kij 	0 �but with scalar rather
than vector displacements�, or similarly the spectrum of lin-
earized magnons in a magnet with random exchange con-
stants. The exact zero mode is associated with the spontane-
ous breaking of a symmetry. Such problems have been
studied for a long time �see, e.g., Refs. �17–19� and Ref. �20�
contains a review�, although as T→0 the probability distri-
bution for Kij we consider is particularly broad. The eigen-
value problem is considered further in the following.

Another problem, which goes back to work by Khirchoff,
associated with this linear system is that of a resistor net-
work. Let I= �Ie� be the column vector of currents �in the
direction of the arrow� along the edges e. In the absence of
any external current sources, the net current into any vertex
is zero, that is

NI = 0. �14�

If potentials �i are associated with each vertex i �forming a
column vector �= ��i��, then Ohm’s law states that
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I = − KNt� , �15�

where Kij = �Rij�−1 is the reciprocal of the resistance �i.e., the
conductance� of the edge e= �ij�. Eliminating the currents
then gives ��=0, which of course is solved by the zero
mode, �=constant.

If one wishes to find the resistance between any two ver-
tices, by connecting an external current source across them,
then this also uses the matrix �. If a current Ji enters the
network at each vertex i, then forming the column vector J
= �Ji�, we now have

NI = − J �16�

so ��=J �	iJi=0, otherwise there will be no solutions�.
Then

� = ��−1J �17�

�plus an arbitrary constant�, where �� denotes � restricted to
the subspace orthogonal to the zero mode, so that

��−1 = 	
n�0

v�n�v�n�
t /
n, �18�

where 
n ,v�n�, are the eigenvalues and normalized eigenvec-
tors of �, and the zeroth eigenvalue 
0=0 is omitted from
the sum. From �, the current flowing along any edge in the
presence of arbitrary sources J can be found. Then the resis-
tance between vertices i and j can easily be shown to be

R�equiv�ij = ���−1�ii + ���−1� j j − 2���−1�ij . �19�

One popular version of the random resistor network prob-
lem is that in which the resistors Rij on the edges are either a
constant R, or infinity, with independent probabilities p, 1
− p, respectively. This has an obvious connection with perco-
lation �21�. In this paper we are instead interested in the case
where Rij has a continuous, but very broad distribution, as in
Ref. �22�. The specific form in which we are interested, be-
cause of its connection with weighted spanning trees, is Rij
=e�ij/T, with �ij random variables, and T going to zero �it
arises, for example, if �ij is the Euclidean distance between
vertices i and j that represent localized states, T is the local-
ization length, treated as a constant, and is one aspect con-
sidered in Ref. �22��. This form also has a less obvious con-
nection with percolation, as we will see. Our simplest model,
in which �ij are independent and uniformly distributed on �0,
1�, has been studied before �23,24,21,25�. The distribution of
conductances on the edges is then P�Kij�=TKij

−1 for Kij

� �e−1/T ,1�.

B. Solution of eigenvalue problem as T\0

The next step we will take is to study the eigenvalue
problem for strong disorder, T small, first in the extreme
limit as T→� for a fixed finite graph G with given weights
�ij. In this limit, the eigenvalues and eigenvectors are deter-
mined by a simple procedure that is related both to the
greedy �Kruskal �7�� algorithm which solves the MST prob-
lem �1�, and to the real-space renormalization group method
for strong disorder that has been applied to quantum prob-

lems �from this point of view, � is the Hamiltonian for a
one-particle hopping problem�. Since � contains terms that
vary greatly in magnitude, we may begin by finding the larg-
est Kij, all other terms being negligible compared with this
�since we are interested eventually in the random version
with a continuous distribution, in which, with probability
one, no two Kij are equal, we neglect the possibility of equal
Kij’s�. Let us relabel the vertices so that those connected by
the largest Kij are 1 and 2. At this level of approximation, the
matrix breaks into a 2�2 block, and �V�−2 other 1�1 zero
blocks. The 2�2 block has a normalized eigenvector �1,
−1�t /�2 that has eigenvalue 2K12, and another eigenvector
�1,1�t with eigenvalue 0. Then we find the next strongest Kij.
This either connects two vertices �which can be relabeled as
3, 4� distinct from 1 and 2, or else it connects either 1 or 2 to
a vertex 3 �we may relabel so that it is K23�. In the first case,
two eigenvectors of the 3-4 block can be found as for 1 and
2. In the second case, in the strong disorder �T→0� limit,
K12 is much larger than K23. We have a situation of degen-
erate perturbation theory, in which the eigenvalue 2K12 has a
negligible correction from K23, while the remaining �V�−1
orthogonal vectors have zero eigenvalue when K23 is ne-
glected. When K23 is included, we derive a reduced Hamil-
tonian by projecting the K23 terms to the subspace of zero
eigenvalues of the previous step. This contains only one 2
�2 nonzero block, and it turns out that this produces a non-
zero eigenvalue 3K23/2, with normalized eigenvector �1,1 ,
−2 ,0 , . . . �t /�6 in the original basis, as well as a zero mode
�1,1 ,1 ,0 , . . . , �t /�3. Hence the subspace of remaining zero
modes has a basis that consists of the latter vector which
involves three vertices that have been connected by the cou-
plings K12 and K23, and �V�−2 vectors, each for a single
vertex that has not yet been connected. These form the de-
generate subspace within which the next largest Kij must be
considered. Similarly, in the first case, the zero-mode sub-
space has a basis that consists of two eigenvectors that in-
volve two vertices each, and �V�−4 that involve one each.

This procedure can be easily iterated. After each step, the
space of remaining zero modes possesses a natural basis with
one basis vector for each of a number of clusters of vertices,
which have been connected by the couplings Kij that were
considered at earlier stages. For each cluster, of say n verti-
ces, the zero-mode eigenvector is a nonzero constant on
those vertices, and zero elsewhere. The next strongest Kij

that has not already been considered �or “tested”� must be
projected into this zero-mode subspace. One additional pos-
sibility occurs in general, as the Kij are considered in de-
creasing order. Sometimes the next strongest Kij connects
two vertices that are already in the same cluster. In this case,
the resulting 1�1 block produces an eigenvalue 0 and no
change in the eigenvector. Thus these couplings may be ig-
nored. The interesting inductive step thus involves a Kij =K
that couples two zero-mode clusters containing, say, n and m
vertices, respectively. The projected matrix in the subspace
spanned by these two normalized eigenvectors takes the
form
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 K/n − K/�nm

− K/�nm K/m
� , �20�

and has eigenvalues �n+m�K / �nm�, with eigenvector ��m ,
−�n�t /�n+m, and zero, with eigenvector ��n ,�m�t /�n+m.
In the original basis, the zero-mode eigenvector is again of
the form of a constant on the connected cluster of n+m ver-
tices and zero elsewhere, which allows the induction to pro-
ceed. This procedure can be followed until �V�−1 nonzero
eigenvalues have been found, and there is the one remaining
zero mode of � itself, which in the original basis is
�1,1 , . . . ,1�t / �V�1/2.

We see that this procedure takes the Kij in sequence, be-
ginning with the largest �corresponding to the smallest �ij�,
and discarding those that connect vertices that have already
been connected. Hence at each step, the clusters of vertices
formed by the zero modes each take the form of a tree,
connected by the stronger couplings Kij that correspond to
nonzero eigenvalues, but which do not form a cycle. The
clusters form a spanning forest of trees �some trees may con-
tain only a single vertex and no edges�, until the last step at
which a single spanning tree is formed. This procedure of
constructing a tree by adding the lowest-cost edges unless
they form a cycle is exactly Kruskal’s greedy algorithm for
finding the MST �7�. To see that it solves the MST problem,
we may construct the partition function. The determinant
det� � is essentially the product of the nonzero eigenvalues
of �. We have shown that this product is approximately
�V�e−��ij��T�ij/T, where T is the spanning tree obtained by the
above procedure. The removal of one row and column before
calculating the determinant removes the factor �V�. Our ap-
proach has constructed the leading term in the partition func-
tion as T→0, and gives a proof that the greedy algorithm is
correct �there are of course other ways to show that �1�,
without linear algebra, but the present approach will be use-
ful to us�.

C. Connection with percolation

It is of interest to study the structure of the eigenvectors
of �, especially in a large portion � of the d-dimensional
cubic lattice �� will be assumed to be a connected domain
with a smooth boundary, such as a cube�. First we establish a
connection with percolation. Suppose that the set of costs �ij

is given. Then at a step where all edges of cost �ij � �̃ have
been tested, the clusters formed by the zero modes can be
thought of as �a sample of� bond percolation clusters �even
when a probability distribution on the �ij has not been speci-
fied�. Moreover, if we are only interested in which vertices
are connected in the clusters that represent the zero modes at
a particular step, then it makes no difference to include the
edges that were tested earlier but discarded as they formed a
cycle. Now we will suppose that the �ij are random variables,
but not necessarily that the costs for distinct edges are statis-
tically independent �note that this includes the Euclidean
model, as well as general lattice models�. If all edges with

cost �ij � �̃ are “occupied,” then we have a general form of
bond percolation, with correlated bond-occupation probabili-
ties. We will always assume that the correlations in the �ij are

short-ranged �falling, say, exponentially with distance�, and
translationally invariant, and that the cumulative probability
for any single �ij is continuous. In percolation, there is a

percolation threshold at �̃= �̃c, such that in the limit �→Zd,

for �̃� �̃c any connected cluster is finite �with probability

one�, while for �̃	 �̃c there is a single infinite cluster, as well

as many finite ones �except when �̃ reaches the supremum of
the support of the probability density of �ij�. In the simplest
model that we use, which contains the generic �or universal�
behavior of short-range correlated percolation, the costs �ij
are statistically independent, and each is distributed uni-
formly in �0, 1�. The corresponding percolation model is then
that in which the bonds �edges of �� are occupied �indepen-

dently� with probability p= �̃, and unoccupied with probabil-
ity 1− p. The percolation threshold in this model will be
denoted pc. In this model, in one dimension, pc=1, and in
two dimensions pc=1/2 on the square lattice, by duality ar-
guments. In the Euclidean model of MSTs, each �ij is the
Euclidean distance between i and j, where the �V� points are
�in the simplest Euclidean model� independently and uni-
formly distributed over the domain � �with density 1�. In this
model, the corresponding percolation problem becomes �the
Voronoi, or “lily pad,” form of� continuum percolation.

In the simplest, independent-edge, model of bond perco-
lation, the finite clusters above and below pc have typical
size �perc which diverges at p→pc as �perc�p���p− pc�−�perc,
where �perc is a universal d-dependent exponent. As p→pc,
these typical clusters are fractals with Hausdorff dimension
Dperc. For d	6, �perc=1/2 and Dperc=4; the clusters behave
as branched polymers �trees� with no, or negligibly many,
cycles �even though cycles are not forbidden in percolation�.
These properties are also believed to hold, with the same
exponents, for the more general models with short-range cor-

relations of the �ij, with �̃��̃c� in place of p �pc, respectively�,
provided that the probability density for each single �ij is

smooth at �̃c. �̃c is nonuniversal, that is it depends on the
details of the probability distribution. In the following, re-
sults will be given in terms of the simplest model, but hold
equally for the other models.

The relation we have described of the growing trees in
Kruskal’s algorithm to percolation is similar to that
�4,26–29� between Prim’s algorithm �30,1� �which for a
given finite sample ultimately produces the same MST� and
invasion percolation �31�. Invasion and ordinary percolation
�at the percolation threshold� are believed to be in the same
universality class.

The eigenvectors with nonzero eigenvalues are always a
combination of two clusters from the preceding step in the
algorithm that are connected by the next-strongest coupling
Kij, with amplitudes that are constant on each of the two
clusters. More precisely, the amplitudes are

1
�n + m

�m

n
�21�

for each vertex on the cluster of n vertices, and minus the
same but with n and m interchanged on the cluster of m
vertices. Hence for �ij � pc, where both clusters typically
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have size of order �perc �evaluated at p=�ij�, the eigenvector
is localized on a length scale also of order �perc. For �ij
	 pc, there is an infinite cluster, i.e., one that occupies a finite
fraction of the vertices as �→Zd. In this case, by letting n
→�, we find that the normalized eigenfunction is concen-
trated on the finite cluster of m vertices, and so is also local-
ized, with localization length diverging as �perc as p→pc.
Thus with the exception of the zero mode, in the strong
disorder limit all eigenvectors of � are localized, except at
p→pc where the localization length diverges. The mean lo-
calization length presumably increases monotonically as the
�ij corresponding to the eigenvalue increase to pc, then for
�ij 	 pc decreases monotonically as �ij→1.

D. Effective resistance in the strong disorder limit

We now apply the preceding results to the effective resis-
tance between any two vertices, R�equiv�ij, using Eqs. �19� and
�18�, in the strong disorder �T→0� limit.

Each eigenvector has the structure described in the previ-
ous section, with constant amplitude on two clusters of sizes
n ,m connected by the next strongest coupling, K say, and
zero elsewhere, and can only contribute to R�equiv�ij if at least
one of i , j lies on one of the clusters. Suppose there is non-
zero amplitude at both i and j. If both are in the same cluster,
then the contributions to R�equiv�ij cancel. If they are on op-
posite clusters, the contribution to R�equiv�ij is

1

m + n
m

n
+

n

m
+ 2� nm

�n + m�K
, �22�

which simplifies to 1/K. Finally, if one of i , j, say i, is on a
cluster �say, the one of n vertices� but the other j is not, then
the contribution is m2 / ��n+m�2K�.

In the procedure that generates the eigenvectors, the sizes
of the clusters are monotonically increasing. For given i and
j, the situation that one of i , j is on one cluster, the other on
the other, occurs only once, at the stage where those two
clusters get connected, so there is only a single contribution
of the form 1/K. The situation where only one of i and j is in
a cluster occurs at larger values of the couplings than this K.
For smaller couplings than K, both vertices are both in the
same cluster, or neither is on a cluster. Then as T→0, this
single term 1/K dominates the equivalent resistance. This is
consistent with the picture that in the strong disorder limit,
the current from i to j is carried along a single nonself-
intersecting path of edges, such that the sum of resistances
along the path is minimized. However, the total resistance of
a path is dominated by the largest resistance on the path, and
this is exactly the resistance 1/K.

We see that the current must pass through the edge of
resistance 1/K that we have singled out, in a particular di-
rection that is also determined �this could be verified also by
calculating the current on any edge, using formulas from the
previous section�. Then the current injected at i must pass
along the edges to the correct end of this edge. In the strong
disorder limit, we may use the above arguments again to find
the resistance between these vertices, which is again domi-
nated by a single resistor of resistance �K−1. This construc-

tion can be repeated until the complete path of lowest resis-
tance from i to j has been found. Each resistor on the path is
one of those that corresponds to a nonzero eigenvalue of �,
and so lies on the MST. It follows that in the strong disorder
limit, the path of least resistance between any two vertices
lies along the MST. In other words, the MST is the solution
to the following problem �the all-pairs minimax path prob-
lem� �32�: given a “resistance” on each edge of a connected
graph G, for each pair of vertices i , j, find the path from i to
j that minimizes the value of the largest resistance on the
path, and take the union of these paths over all pairs of
vertices i , j.

E. Effect of small nonzero temperature

Now we turn to the behavior at a small nonzero tempera-
ture T, which means a finite strength of disorder; here, we
present arguments using only percolation theory, leaving the
behavior of the eigenvalue problem for a later section.

RRNs in d dimensions with resistances of the form Rij
=e�ij/T for �ij� an edge connecting nearest neighbors, Rij =�

otherwise, have been considered in several earlier works
�22–25�. As the distribution of resistances is very broad for T
small, the following picture of the network emerges. If we
consider the clusters that are connected by resistors with

�ij � �̃, then for �̃� �̃c these do not percolate. They consist of
low resistances, which can be considered to be essentially

zero �like superconducting links�. Resistors with �̃c−T��ij

� �̃c+T �the exact coefficient of T in these bounds is not
precisely defined, but is order 1, and is set to 1 for illustra-
tion� are all of a similar magnitude and connect the super-
conducting clusters into a network that spans a positive frac-
tion of the system. Finally, the resistors with �ij 	 pc+T
connect other clusters to this network, but these clusters are
shorted out by the lower resistors and do not contribute to
conduction on large scales. On large scales, the resistance or
conductance of the system is that of an effectively uniform
medium described by a conductivity � �note that the conduc-
tance �the reciprocal of the resistance� of a cube of size L is
�=�Ld−2�, with

� � e−�̃c/T � �T�d−2��perc, d � 6,

T2, d � 6.
� �23�

This arises as follows: there is a conductance of around e−�̃c/T

for each “critical” edge �22�, and negligible resistance for the
clusters connected by these edges. Then for dimensional rea-
sons, the density of critical edges that connects clusters con-
tributes a factor of length to the d−2 power, and this length

must be the size of the clusters used, which is �perc�p= �̃c

−T��T−�perc. For d	6, there is an additional power �perc
d−6

which is the number of distinct connected percolation clus-
ters in a window of size �perc at criticality �21� �this number
is of order one for d�6—this is the breakdown of hyper-
scaling relations for d	6, expressed in terms of the geom-
etry of the clusters �21,33��; these distinct conducting chan-
nels add since they are in parallel. The possibility of an
additional power of T �as would occur in some different
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models of RRNs �21�� was investigated, and bounds on its
exponent were found �23�. Le Doussal �24� argued that the
power of T in � is exactly as given in Eq. �23�. It should be
noted that in these earlier works the length scale above
which the effective medium, with negligible fluctuations in
conductivity, applies is �perc�T−�perc. This length scale has
also been identified in a recent work that examined finite-size
scaling properties of the RRN �25�. This length scale is an
important result for weighted spanning trees �i.e., MSTs at
positive T� as well:

� � T−�, �24�

with �=�perc.

F. Cost and entropy at positive temperature

In this section, we address the positive-temperature prop-
erties of weighted spanning trees directly, that is in terms of
trees, not resistor networks.

The most elementary excitation of a spanning tree is to
move an edge. By this we mean that an edge on the tree is
removed, thus cutting the tree into two parts, which are then
reconnected by adding a different edge �not on the initial
tree�. The change in cost is simply the difference of the costs
of the two edges involved. All spanning trees can be reached
from the MST by successive operations of this type �1�.
Starting from any spanning tree, then because our models
assume a continuous distribution of costs for the edges, with
probability one either it is the unique MST, or it is possible
to move one edge such that the total cost decreases �34�.
Hence there are no true “metastable states” �i.e., local, but
not global, minima with respect to moving a single edge� in
the MST problem, at least not on a finite graph as assumed in
these arguments.

At low temperatures T, there will be thermal excitation of
single-edge moves, which can occur independently. Consider
the following situation. In the greedy algorithm, suppose that

edge �ij� is added to the MST when �ij = �̃. Suppose further
that, before this edge is added, the trees �clusters� already
grown are such that �ij� and one other distinct edge �kl�
would form a cycle if both were added. Then adding �ij� to
the tree prevents the subsequent addition of �kl�. But if �kl� is
added instead of �ij�, then this connects the same two clus-
ters, and hence does not affect which edges can be added at

subsequent stages of the greedy algorithm, that is at �̃	�ij.
As such pairs of edges will be found at all stages of the
greedy algorithm, there will be many such pairs of edges in
the MST, each of which may be excited �one edge replaced
by its partner� independently of the states of the other pairs.

If we consider only these pairs, then a simple picture of
“two-level systems” �TLSs� �35� emerges, that should be
useful at low T: other than the MST, the spanning trees that
contribute to the partition function differ from the MST only
by having one or more of the edge-pairs excited, and these
can be excited independently. The partition function within
this picture can be calculated easily if the excitation costs
�kl−�ij are given. One needs some information about the
probability distribution of these excitation costs. Let us con-

sider only values of �ij �as before, this is the lower of the
costs for each pair� that are bounded away from the critical

value �̃c. Then the sizes of the clusters connected by �ij at
that stage of the greedy algorithm are of order �perc��ij� �for

cases where �ij 	 �̃c, we mean the size of the finite cluster�s�
involved�, which is bounded. When T is small, the pairs in
which we are interested have �kl−�ij of order T or less, and
occur with density tending to zero with T; hence the mean
spacing between them is much larger than their size in this
limit. It is reasonable to imagine that their excitation costs
are statistically independent, and that the probability density
for the excitation cost of each approaches a constant as �kl
−�ij→0 �the constant might depend on �ij, but this is not
important�. For example, one can estimate this probability
density, and check statistical independence of distinct TLSs,
for the case when the cycle involved is an elementary square
of side 1. We introduce the standard �canonical ensemble�
statistical mechanics definitions of the free energy F=
−T ln Z, entropy S=−�F /�T, and internal energy �or cost�
E=F+TS=T2� ln Z /�T. The entropy can be thought of as the
logarithm of the number of trees with cost less than the cor-
responding value of E �this microcanonical-ensemble defini-
tion will agree with the canonical definition in the limit �V�
→� with S and E� �V�, and with T fixed, as used here�. It
follows from the TLS model that at temperature T, the en-
tropy per vertex, s=lim�V�→�S / �V�, behaves as

s � T� �25�

as T→0, while the thermal average excitation cost per vertex
��=lim�V�→��E−�OPT� / �V� behaves as

�� � T�+1 �26�

in the same limit, where �=1. Since we have included only
a subset of the possible excitations, these statements should
be taken as a lower bound on s, so that ��1. This notion of
TLS is generic for many disordered systems �35�, and the
behavior s�T is typical for these applications. �A similar
picture of TLSs for MSTs was also used in Ref. �12� to
obtain the behavior of the cost of the minimum spanning tree
that differs from the global MST by a given fraction of
edges.� Note that in these statements we did not need to
explicitly perform the disorder average, as the thermody-
namic �V�→� limit of these quantities self-averages.

In this argument, we used only TLSs that demonstrably
were completely independent as excitations. There could of
course be other low-energy TLSs, possibly involving moving
more than one edge, that can only be excited conditionally
on the states of other edges. But in general, by a TLS we will
mean a compact �localized� excitation. We note that the
above arguments do not apply in the one-dimensional case,
which, however, can be solved directly. For a system of L
vertices with a periodic boundary condition, the entropy and
mean excitation cost are of order ln LT and T �not �Ld, un-
like the d	1 cases�, respectively, as L→� with T fixed;
they can be calculated exactly for the simplest model of in-
dependent edges each distributed uniformly in �0, 1�.
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So far we were careful to move edges that were not close
in cost to the percolation threshold. Now we examine these
in detail, using the simplest model for which the correspond-
ing percolation problem is an uncorrelated bond percolation
model. The idea is similar to that used in the RRN point of
view in the previous section. If we run the greedy algorithm
until all edges with cost less than pc minus of order T have
been tested, then we obtain a set of clusters of size less than
about �perc�p= pc−T�. If we add all edges of cost between
this limit �pc−T� and pc plus of order T, then we obtain a
giant cluster that contains a nonzero fraction of the vertices
as �V�→�. We are interested in the subset of these edges that
connect distinct components �which can be viewed either as
clusters or as trees� of the spanning forest for �̃= pc−T; we
call these critical edges. Clearly not all of these critical edges
can be on the MST. But for the positive-temperature
weighted spanning tree problem, the many different ways of
adding a subset of the critical edges so as to obtain only trees
have similar Boltzmann-Gibbs weight. We can construct a
reduced graph that has the critical edges as its edge set, and
the connected components for �̃= pc−T as its vertices. We
will assume that the reduced graph is connected. Then if we
sum over all spanning trees of this reduced graph with the
corresponding Boltzmann-Gibbs weights, then as the differ-
ences in cost are only of order T when any one edge is
moved, this problem is approximately a uniform spanning
tree problem. It is essentially counting all the spanning trees.
As in the TLS argument, the choice of a spanning tree on the
reduced graph does not affect the remaining edges to be
added of still higher cost, which complete a spanning tree of
G, because the spanning trees of the reduced graph all con-
nect the same vertices of G.

The connectivity properties, such as the probability that k
distinct branches of the tree cross between two chosen balls
�as discussed in the Introduction�, and corresponding scaling
dimensions and Hausdorff dimensions are unaffected by
TLSs of size smaller than the scale on which these correla-
tions are studied. But on scales larger than �perc�pc±T�, the
argument here, which is essentially a coarse-graining or
renormalization group argument, suggests that the connectiv-
ity properties become those of uniform spanning trees
�USTs�. In the UST problem, which corresponds to the T
→� limit of the weighted spanning trees, disorder �random-
ness� in the costs �ij can be shown to be irrelevant, that is it
has no effect on the large-scale universal properties. As we
have seen that temperature is a relevant perturbation of the
zero-temperature �MST� limit, it makes sense that the cross-
over is to USTs at large length scales. This is consistent with
the arguments of the previous section, in which the conduc-
tivity at large scales becomes essentially nonrandom because
we can identify the nonrandom T�0 �uniform� spanning tree
problem with a resistor network with a constant resistor on
each edge of the lattice. We see again that the crossover
length scale diverges as ��T−� as T→0, with �=�perc. As
noted in the Introduction, by using the above results for the
cost and entropy, this can be interpreted as saying that for a
typical spanning tree that has cost within 1+ of �OPT, the
length scale is ��−�/��+1� at �V�→�, for →0.

We should emphasize that saying that temperature is a
relevant perturbation of the zero-temperature MST fixed

point does not, in our view, entirely rule out the possible
equivalence of the universality classes of statistical connec-
tivity properties in the MST at T=0 and USTs. That is be-
cause the averages are different in the two cases. For the
MST, we mean the average of a quantity over the random
costs with respect to which the optimum must be found. For
the UST, there is a nonzero �or even infinite� temperature.
Theoretically, it still appears possible that the universality
classes for geometric or connectivity properties are the same,
in sufficiently low dimensions �indeed, in d=1 the resulting
probability distributions on trees are the same, though the
connectivity properties are trivial�. For d=2, this would im-
ply conformal invariance of the MST. However, the univer-
sality classes for d=2 have been compared numerically by
looking at certain exponents �29,36�, and while the early
results may not have ruled out their equality, recent numeri-
cal evidence �37� seems also to be against these universality
classes being the same, and against the conformal invariance
of the d=2 MST.

The reduced-graph �or coarse-graining� idea can be used
to estimate the contribution to the entropy of the network of
critical edges. On large length scales, the reduced graph be-
haves as a finite-dimensional system. Hence the entropy of
the uniform spanning trees formed using the critical edges
only should be of order the number of vertices of the reduced
graph. For d�6, there is of order one connected percolation
cluster per correlation volume �perc�pc−T�d, and hence the
contribution to the entropy per vertex is �perc�pc±T�−d�Td�

for d	1. For d	6, there are of order �perc
d−6 connected clus-

ters per correlation volume �21�. Hence we expect that the
contribution to the entropy per vertex is �perc�pc±T�−6�T3

for d	6. In either case, the result is smaller than T as T
→0 when d	1. For 2�d�6, we predict then that the en-
tropy per vertex has the form

s � aT + a1T2 + a2Td� + ¯ �27�

as T→0, where a, a1, a2 are nonuniversal coefficients. This
form can be viewed as an “analytic part,” in integer powers
of T, which we have continued to order T2 �because d�	2
for d�2�, plus a nonanalytic or singular part Td�. �Such a
form is familiar from ordinary critical phenomena at nonzero
temperature.� The free energy per vertex, f =lim�V�→�F / �V�
divided by temperature has a similar expansion, as does the
internal energy per vertex over temperature, only the coeffi-
cients a, ai being changed in obvious ways in each case.
Thus the earlier arguments that the leading term T� in s in
fact has �=1 is an argument that the leading effects are
localized excitations that contribute to the analytic part. A
power ��1 would be viewed as a nonanalytic part and
would presumably indicate that the leading contribution is
from large-scale collective excitations. The singular part Td�

for d�dc is of the form expected when hyperscaling applies
in critical phenomena, except that here it applies to F /T in-
stead of to F. That is because we are dealing with a fixed
point �or critical point� at zero temperature, and the natural
quantity that scales is F /T, which controls the probabilities
of different configurations �whereas at a transition at nonzero
T=Tc, one can expand F /Tc in powers of T−Tc�. Hence we
expect on general grounds that these expansions are of the
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correct form. For d�dc=6, the singular part takes the form
T3 which apparently we cannot distinguish unambiguously
from the analytic part. This difference from ordinary critical
phenomena occurs because only T�0 is available.

G. Implications for the eigenvalue problem at TÅ0

In this section, we apply the results obtained in previous
sections from RRNs and from percolation to the eigenvalue
problem for the matrix �, in the regime of strong but finite
disorder, T nonzero and small. The results of this section are
not used elsewhere in this paper.

As we saw, when T→0 in a large system, de-localized
eigenvectors �other than the zero mode� occur only at the
percolation threshold pc. On the other hand, when T is non-
zero there is a well-defined probability density for the Kij’s.
One then expects delocalized �in fact, extended� eigenvectors
to occur at sufficiently low eigenvalues if d	2, while for
d=2, the localization length diverges as the eigenvalue 

→0 �18�. We also expect that for d	2, in the strong disorder
limit as T→0, the fraction of extended eigenvectors tends to
zero. One would like to understand how these two descrip-
tions of the spectrum are connected in the limit. We will
present a partial answer to this question.

When T is small and nonzero, the method used for T
→0 breaks down when the assumption that Kij’s for distinct
edges are very different breaks down. A typical way for this
is to happen is provided by the configurations that gave the
TLS in the previous section. When �ij and �kl connect the
same two clusters �zero modes of couplings stronger than
either of these�, and are within T of each other, then both
must be included in the reduced 2�2 block, and the eigen-
vectors and nonzero eigenvalue they produce are modified,
though the eigenvector is still localized. This does not affect
later eigenvectors, and in the partition function produces the
thermal effects we have described using the TLS picture.

It is very plausible that the extended eigenvectors for
small T are produced by the critical edges only, that is those

with �ij within T of �̃c that connect clusters of size of order �.
This is connected with the crossover to the UST behavior at
large length scales, and to the effectively uniform conducting
medium in the RRN point of view. Hence, one expects that
using these clusters, on length scales larger than �, the La-
placian � can be represented by �eff=−��2. Then the den-
sity of eigenvalues 
 �per unit volume and per unit 
� is
predicted to be ��−d/2
�d−2�/2 as 
→0. This appears to be
consistent with other approaches for the d=1 case, which is
essentially soluble �17,19� �and the value of � can also be
easily verified for this case �24��.

Next, there is the question of the behavior of the mobility
edge �the value of 
 above which, in a large system, eigen-
vectors are localized�, or alternatively the fraction of eigen-
vectors that are extended. We will not enter into a full study
of the spectrum here, but only make a crude estimate, which
may capture the correct asymptotic behavior. Using �eff, we
expect that the number of states �per unit volume� with ei-
genvalue less than 
 scales as ��−d/2
d/2 as 
→0. �eff is
valid only for scales 	�, so this can hold only until the
number of states it predicts reaches �−d. This gives a “criti-
cal” value for 
,


c � e−�̃c/T � �Td�, d � 6,

T3, d � 6,
� �28�

as T→0. This value is our prediction for the mobility edge
for d	2, though it is possible that the correct value is larger
for d	6 because the number of clusters of size � that can be
used to construct the extended states is of order �−6 per unit

volume, not �−d. The exponential dependence, e−�̃c/T, agrees
with the fact that in the T=0 limit, delocalization occurs only

at �̃= �̃c, so only the subexponential dependence on T can be
in question.

The fate at T�0 of the eigenvalues of the T→0 limit at

�ij 	 �̃c is a puzzle. They should remain localized, but their
density of states appears to overlap that of the extended
eigenvectors. We cannot resolve this here, and so our de-
scription of the spectrum for d	2 and for small T�0 must
remain somewhat tentative.

III. FINITE-SIZE AND BOUNDARY-CONDITION EFFECTS
ON THE TOTAL COST

In this section we consider the effect of finite system size
on the optimum cost of the spanning tree, and of changing
the boundary conditions �imposing additional constraints� on
this minimum cost. The arguments are largely independent of
those in the last section, except that the relation to percola-
tion again appears. The results take the form of a term in the
subleading �in inverse powers of system size, L say� behav-
ior of the cost that features an exponent �, which is again
related to percolation, �=−1/�perc. Finally, we obtain a scal-
ing form for the free energy, which exhibits the crossover
between the zero temperature cost and the infinite-size limit
at fixed positive temperature, which is related to the results
of the previous section.

A. Finite-size scaling of the mean cost

The relation of MSTs to percolation was explained in Sec.
II C. In the most general case, when all edges of cost less

than �̃ are occupied, we have a subgraph of G which consists
of one or more connected components, called clusters �there
may be clusters consisting of a single vertex and no edges�.
This number will be denoted N��̃ �G�, and depends implicitly

on the set of edge costs �ij. For �̃�min�ij��ij, N��̃ �G�= �V�,

and for �̃	max�ij��ij, N��̃ �G�=1. Between these limits,

N��̃ �G� obviously has a sequence of downward steps of unit
magnitude. The MST for the same graph G with the same set

of costs consists of those edges which, as �̃ is increased from
its lower to its upper limit, decrease the number of connected
clusters by 1. Then we have the general formula for the
optimum cost �without averaging�:

�OPT = − �
−�

�

d�̃�̃
�N��̃�G�

��̃
. �29�

It follows that the mean cost of the MST is exactly
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�OPT = − �
−�

�

d�̃�̃
�N̄��̃�G�

��̃
, �30�

where N̄��̃ �G� is the mean number of connected clusters in
the corresponding percolation problem. �This idea is cer-
tainly known to probabilists, and is contained in Frieze’s �38�
exact calculation of �OPT as �V�→� for the case of the com-
plete graph �i.e., one edge �ij� for every pair i, j of vertices�
with independent costs for the edges.� For the simplest
model, in which the costs are independent and uniformly
distributed in �0, 1�, this reduces to

�OPT = − �
0

1

dpp
�N̄�p�G�

�p
, �31�

which we use hereafter. For the complete graph, the result as
�V�→� is �38� �OPT=��3�, where � is the Riemann zeta func-
tion. In this paper, we specialize to graphs G that are a por-
tion � of a cubic lattice in d dimensions, and we will further
assume here that � is a cube of side L �parallel to the lattice
axes�, with periodic boundary conditions. For this system,

we write the mean number of percolation clusters as N̄�p ,L�.
Again, the results found below also apply to the more gen-
eral models as delimited in the previous section. The follow-
ing arguments could be extended further to study the bound-
ary terms in Eq. �2�, or further finite-size corrections.

The function N̄�p ,L� /Ld should have a well-defined
monotonically decreasing limit:

Y�p� = lim
L→�

N̄�p,L�/Ld, �32�

where the limit is taken with p fixed. Thus

� = − �
0

1

dpp
�Y�p�

�p
. �33�

The expected fraction of edges of cost between p and p
+dp that lie on the MST as L→� is

−
1

d

�Y�p�
�p

dp �34�

for the �hyper-� cubic lattice; this function has been calcu-
lated and plotted in Ref. �29� for some lattices in dimensions
d=2 and 3 �though without making this connection with per-
colation, and the singular contributions we discuss below are
not visible�. There is a simple but important relation involv-

ing Y, which originates from the facts N̄�1,L�=1, Y�1�=0. It
can be written as

− �
0

1

dp �N̄�p,L�
�p

− Ld�Y�p�
�p

� = − 1, �35�

and will be used below.
We may now substitute these forms to obtain a result for

�OPT:

�OPT = �Ld − �
0

1

dpp �N̄�p,L�
�p

− Ld�Y�p�
�p

�
= �Ld − pc − �

0

1

dp�p − pc� �N̄�p,L�
�p

− Ld�Y�p�
�p

� ,

�36�

using Eq. �35�. Notice that in more general models, the term

−pc is replaced by the value −�̃c of the cost at the percolation
threshold, as claimed in the Introduction. Next, we present
arguments that the remaining integral goes to zero as L
→�, and find its magnitude.

In percolation, N̄�p �G� plays the role of the free energy of
a statistical mechanics problem �21� �this can be made pre-
cise by using the relation of percolation to the Q→1 limit of
the Q-state Potts model on the arbitrary graph G�. In the case
of a lattice in dimension d, Y�p� has a singular �nonanalytic�
behavior at p= pc �pc is the percolation threshold of the infi-
nite system�, which for d�2 has the form �5�

Y�p� � Y�pc� + �p − pc�Y��pc� +
1

2
�p − pc�2Y��pc�

+ C±�p − pc�2−� + ¯ �37�

as p→pc. Here � is another universal exponent, C−, C+ are
nonuniversal d-dependent constants for the cases p� pc, p
	 pc, respectively, and the leading terms on the right-hand
side vanish more slowly than �p− pc�2−�. For d�dc=6, 2
−�=d�perc �and apparently varies monotonically�, while 2
−�=3 for d�6. As 2�2−��3 when d�2, the nonanalytic
part of Y does not necessarily contradict the monotonic de-
crease of Y�p� with increasing p. We will define

Y�p�sing = C±�p − pc�2−�, �38�

for all p, so as to match the nonanalytic behavior; Y�p�sing

will be used only in the vicinity of pc. For d=1, pc=1,
�perc=1, Y�p�=1− p, and the singular piece cannot be sepa-
rated from the background, though Y�p� does obey the ex-
pected linear form as p→pc �Y must be positive, so it cannot
be smoothly continued to p	1; this can perhaps be viewed
as a nonanalyticity�.

The idea for completing an estimate of the final integral in
Eq. �36� is that the difference of derivatives in the integrand,
which must obviously be smaller than Ld as L→�, is in fact
much smaller, and concentrated at p= pc. At finite L,
Ld�Y /�p, which has a nonanalyticity at pc, is replaced by

�N̄�p ,L� /�p, which is analytic in p for all p �in fact, it is a
polynomial in p�. The derivative of the number of clusters is
sensitive to the finite size of the system only through corre-
lation effects. Consequently, sufficiently far from pc that L
��perc� �p− pc�−�perc as p→pc, the difference between the
two functions is of order e−c�L/�perc. Hence, the final integral
converges, and one would expect it to be bounded by

�L−1/�perc �this would follow immediately, by using the iden-
tity �35� once again, if we had more information about the
sign of the integrand in this identity�. The following argu-
ments provide a detailed support for this idea, and indicate
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that this conservative bound is likely to be the precise order
of this correction term in most cases.

We will use the notion of finite-size scaling �39�, which
generalizes the scaling statements to finite size L. This fol-
lows the form for conventional equilibrium phase transitions
�see especially Refs. �40,41��, which percolation closely re-
sembles �some rigorous results can be found in Refs.
�33,42��. We will briefly review the form of these arguments,

so as to include the cases d	dc. While N̄sing�p ,L� is analytic
in p for finite L, we wish to identify a part �traditionally
termed “singular”� that in the vicinity of p= pc tends to
LdYsing�p� as L→�. This may be defined by subtracting the
nonsingular part of Y�p�:

N̄sing�p,L� = N̄�p,L� − Ld�Y�p� − Ysing�p�� , �39�

which again will be used only in the region p� pc. Then
according to the theory of finite-size scaling for equilibrium

phase transitions, as L→�, N̄sing�p ,L� obeys the scaling
form

N̄sing�p,L� = n�tLyt,uLyu� , �40�

where t= p− pc, u is an additional parameter �a coupling con-
stant� that in a field theoretic calculation �43� is treated as
independent, and yt and yu are universal scaling dimensions
�which depend on d�. The scaling form is supposed to hold
for some finite function n as L→� with the arguments tLyt,
uLyu held fixed, and thus does apply only for p close to pc.
The correlation length, in an infinite system, scales as �perc
� �p− pc�−�perc, where �perc=1/yt. For d�dc, u renormalizes
to a fixed point value and can be dropped �unless it is desired
to find corrections to scaling�. For d	dc, u renormalizes
towards zero �yu�dc−d�0�, but cannot be dropped as the
free energy n depends on it in a singular fashion:

n�x,z� = zp1n*�xzp2� �41�

as z→0. The authors of Ref. �40� showed that p1=0, and this
should also hold for percolation. Then the mean number of
clusters takes the form

N̄sing�p,L� = �n�tLyt� for d � dc,

n*�tLyt
*
� for d � dc,� �42�

in which up2 has been absorbed into the nonuniversal scale
factors that accompany t. Here yt

*=yt+ p2yu, and for percola-
tion the field-theoretic formulation leads to yu= �6−d� /2,
p2=−2/3, yt

*=d /3=ytd /dc �44� for d�6. The implication of
these scaling statements is that the analytic background that
has been subtracted has negligible �exponentially small� L
dependence, even at pc. The finite-size scaling form given
should be of order Ld as L→� with t fixed, and must match
LdY�p�sing, so we must have

n�tLyt� � C±Ld�t�d/yt � Ld�perc
−d for d � dc,

n*�tLyt
*
� � C±Ld�t�d/yt

*
� Ld�perc

−6 for d � dc, �43�

for �t�Lyt �respectively, �t�Lyt
*
� large, for both signs of t. These

scaling behaviors are consistent with the above forms for �,

and LdYsing�p� itself satisfies the same scaling behavior as

N̄sing�p ,L�, LdYsing�p�= Ȳ�tLyt� �Ȳ�tLyt
*
� for d�dc�. For d

=dc there may be logarithmic corrections to these scaling
forms, which we will neglect.

Now the integral in Eq. �36� contains only

�N̄sing�p ,L� /�p−Ld�Ysing�p� /�p, and for d�dc only can be
rewritten using the scaling behavior in terms of x= tLyt �we
turn to the d	dc cases below�:

− L−yt�
−�

+�

dxxdn�x�
dx

−
dȲ�x�

dx
� . �44�

The difference of derivatives is expected to behave as
e−c��x�1/yt for some d-dependent constant c� at large �x� because
the leading error is due to correlations that propagate around
the system, and will involve the linear size L /�perc. It follows
that the integral converges, and we have obtained

�OPT � �Ld − pc + 
�L� �45�

as L→�, with �=−yt.

As an aside, we point out that n�x�− Ȳ�x� cannot go to
zero at large positive x, but must approach 1 as p→1. We

have pointed out that N̄�p ,L�−LdY�p� approaches 1 as p
→1; now we are arguing that this difference of order 1 exists
all the way to the vicinity of p= pc, and so the integrand in
Eq. �35� behaves as a � function when L→�. This effect is
due to the “giant” percolation cluster that occupies a positive
fraction of vertices when p	 pc. If we start at p=1, and
decrease p, then edges are removed at random. Some of
these removals disconnect some vertices from the giant clus-

ter. However, the resulting value of L−d�N̄�p ,L� /�p has only

small finite size corrections, of relative order e−c�L/�perc. The
giant cluster does not disappear until the critical region is
reached �where it cannot be distinguished from clusters of

size �perc�L�, and so N̄�p ,L�−LdY�p� remains close to 1
down to the same region.

A useful check on the arguments is provided by the d=1

case, in which N̄�p ,L�=L�1− p�+ pL, n�x�− Ȳ�x�=ex �x�0
for d=1�. Thus

�OPT = L/2 − 1 + L−1 + ¯ �46�

in d=1 �higher terms are of order L−2�, that is �=1/2, 
�
=1. It is likely that 
�	0 for all d.

For d	dc, the use of the scaling forms with n* in place of

n would lead to the final integral being of order L−yt
*
. This

result is incorrect. The error is that while the scaling form for

N̄sing�p ,L� correctly describes the leading behavior as p
→pc, the integral we wish to calculate contains the differ-
ence of derivatives, from which the leading part has been
subtracted. It turns out that there is a subleading part of

N̄�p ,L� that dominates this subtracted form. Mean-field

theory yields a nonanalytic contribution to N̄�p ,L� that is
precisely of the form LdYsing�p� near pc. The leading correc-
tion to LdY�p ,L� due to Gaussian fluctuations at all wave
vectors �within a field-theoretic formulation� is �C±�Ld�t�d�perc
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�times ln�t� when d is even�, which is smaller than LdYsing�p�
as t→0. �For comparison, for d	dc, the universal scaling

function n*�tLyt
*
� comes entirely from the “zero-mode” fluc-

tuations �41�.� However, when LdY�p� is subtracted, the lead-
ing singularity LdYsing�p� is removed, and so is C±�Ld�t�d�perc,
but a finite-size correction to the latter remains. This finite-
size correction is of the form

N̄�p,L� − LdY�p� = −
1

2�	
q

ln�q2 + �t�� − Ld� ddq

�2��d

�ln�q2 + �t��� . �47�

The ultraviolet divergence in this expression is cut off on the
lattice; q2 is replaced by a lattice expression that is periodic
over the Brillouin zone �to which the sum and integral are
restricted�, and which reduces to q2 at small q. The sum is
over wave vectors q=2��n1 , . . . ,nd� /L, where ni are inte-
gers. Some numerical factors multiplying t have been ne-

glected. One finds that N̄�p ,L�−LdY�p��e−L�t�1/2
as L→�.

This correction is significant when �t��L−1/�perc. For d	dc,

the region �t��L−1/�perc is much larger than �t�	L−yt
*
, within

which the other effects are important. In the wider region, the
Gaussian fluctuations dominate, as the interaction term u is
weak �and perturbation theory is infrared convergent for d
	dc�. The contribution of the giant cluster also is significant

over the same window. Then �N̄�p ,L� /�p−Ld�Y�p� /�p pos-
sesses a scaling limit that is a function of tLyt only, where
yt=2 in this case. Hence the rescaling argument in this case
produces 
�L−1/�perc also. There are also other corrections for
d	dc, including an effective finite-size shift in the value of
pc, of order L−�d−4�, which is smaller than the width of the
critical region �p− pc��L−yt. This shift contributes an amount
of order L−�d−4� to �OPT, smaller than L�. For d�dc, all fluc-
tuation effects are of similar order as the leading mean-field
term, and have to be resummed using the renormalization
group; they contribute to the same universal scaling func-

tions n and Ȳ, and the present arguments for d	dc do not
apply there.

The generalization to finite sizes with periodic boundary
conditions, but for a cuboid of general aspect ratio �held
fixed as L→�� in place of the hypercube, is straightforward.
Another generalization is to a long cylinder, of length L, and
hypercubic with periodic boundary conditions with period W
in the d−1 transverse dimensions. In this case, the mean
optimum cost per unit length tends to a W- �and d-� depen-
dent limit as L→�, and by similar arguments �using meth-
ods from Ref. �41� for this geometry� this behaves as

lim
L→�

�OPT/L � �Wd−1 + 
�W�−1, �48�

with the same exponent �, as W→�.
Finally, the application of similar ideas to the simplest

model MST on the complete graph with N= �V� vertices, to
obtain finite-N corrections to the result of Ref. �38�, should

give �using an analysis like Ref. �41�, and similar to the

L−yt
*
=N−1/3 for d	dc that we argued is incorrect in the finite-

d lattice case, but should be correct here�

�OPT � ��3� − 1/N + 
�N−4/3 �49�

�we note that the percolation threshold is pc=1/N �see, e.g.,
Ref. �45��, and all terms are smaller by 1/N than in the
lattice cases�.

B. Effect on the mean cost of a change of boundary condition

In this section, we consider the long-cylinder geometry,
described in the Introduction and at the end of Sec. III A. We
consider the effect of a change in boundary condition, that is
imposed by demanding that the minimum cost spanning tree
have k distinct branches crossing from one end to the other,
instead of the one that is typical for the usual MST. We call
the minimum cost for this constrained spanning tree �OPT�k�.
Thus, outside of the end regions of the cylinder, there are �at
least� k trees, forming a spanning forest of minimum cost.
This type of change of boundary condition could be handled
by the Hamiltonian methods described in Ref. �41� if we had
a direct field theory for the MST problem. This would lead
us to expect the change in optimum cost per unit length to
scale the same way as the finite W correction to the optimum,
that is as W�−1. This expectation is correct, but as such a
formulation is not presently available, we will turn to a dif-
ferent approach, which produces an upper bound, and which
can also be applied to other combinatorial optimization prob-
lems.

The idea is to begin with the MST on the long cylinder
without the additional constraint, and now modify it so as to
grow k−1 additional disconnected trees that extend from one
end to the other. This must increase the total cost, and we
estimate the resulting increase, thus producing an upper
bound on this change.

It is useful to give two versions of this procedure; the first
version is simple and produces a rather conservative bound,
while the second, more refined upper bound is tighter. When
expressed in terms of an exponent �, which should be the
same as the other �’s in this paper, the first says that ��0,
and the second that ��−1/�perc. The second bound presum-
ably cannot be tightened further in most cases.

We begin with some definitions for the MST on a long
cylinder. There is a path on the tree from one end of the
cylinder to the other, which with probability approaching 1
as L /W→� is unique outside the end regions �of length of
order W�. As the end regions are unimportant, this path is
essentially unique, and we will refer to it as the trunk of the
tree. The remainder of the tree consists of side-branches,
which are trees rooted on the trunk; the side-branches pre-
sumably have linear size of order W or less. The basic pro-
cedure, which we describe for k=2 as the generalization to
k	2 is simple, is to modify the tree in a sequence of steps so
as to grow a second tree, distinct from what remains of the
first one except in the end regions, that possesses a trunk
extending from one end to the other of the cylinder. This is
done by beginning at one end of the cylinder, and cutting off
parts of side-branches �by removing an edge� from the origi-

N. READ PHYSICAL REVIEW E 72, 036114 �2005�

036114-12



nal MST and joining them to the new tree. Each side-branch
of the original tree that is cut must be adjacent to the new,
growing tree so that it can be reattached to it, by including an
edge that was not part of the original MST. We end up with
two disjoint trees, which together span the vertices, one of
which has the same trunk as the original MST. The side-
branches, and the cutting and attaching edges, are selected so
as to minimize the increase in cost of the final k trees relative
to the MST.

In the first, simple procedure, at each step we look for a
side-branch attached to the trunk of the original MST that is
adjacent to the growing tree, and which extends in the
growth direction. This will typically be of size W, and will
touch the growing tree at a distance of order W from the
trunk of the MST. The cut is made at an arbitrary point
between the reattachment point �which is also chosen arbi-
trarily� and the trunk. The growing tree thus grows by order
W towards the target end. The number of steps required will
be of order L /W, and each increases the cost by order one, so
the change in cost is of order L /W, and the pair of trees
constructed provides an upper bound on the true minimal
increase in cost relative to the MST. For the general k-tree
version, k−1 additional trees can be grown in parallel, and
each step makes progress by W /k1/�d−1�, similar to arguments
in Ref. �13�. The total change in cost is then roughly of order
kd/�d−1�L /W.

In the second, improved version, we will recognize that
the selection of edges to cut and to add can be optimized to
significantly reduce the increase in cost per step. In fact, the
edges that will be moved will again be “critical edges,” here

meaning those with cost within W� of �̃c.
If the greedy algorithm is applied to any one of our mod-

els on the cylinder, then we can run it up to a value of �̃

� �̃c such that �perc�W, say �perc=W /10. If W is large, this

means �̃= �̃c minus of order W−1/�perc. At this stage, there are
many clusters of size �perc, but it is rare for a cluster to
percolate around the “circumference” W�L of the cylinder
�the probability in a length of order W along the cylinder is
of order e−cW/�perc�. We will ignore these exceptional cases,
for now, and return to this oversimplification later. Now we

continue the greedy algorithm up to �̃= �̃c plus of order
W−1/�perc. There will now be many large clusters that have
size �W along the long direction of the cylinder, and which
together occupy a positive fraction of vertices as L→�.
However, we cannot guarantee that there is a single giant
cluster that percolates the full length of the cylinder with
probability one. There is always a nonzero probability that
the cluster is broken somewhere, even though this probabil-
ity may be exponentially small in W. �For finite W, on length
scales 	W the problem maps onto an effectively one-
dimensional percolation problem, in which pc=1.� In fact, if

above �̃c the correlation length is �perc, then the probability
per unit length of a break in the cluster is of order
e−�W / �perc�d−1

when W��perc. This will not affect the argu-
ment, and we may continue as if there is a giant cluster and
a path on the corresponding tree that runs from one end to
the other �this path will be the trunk of the MST when the
greedy algorithm is finished�. After giving the argument un-

der this simplifying but incorrect assumption, we will return
to and correct for this oversimplification also.

We can choose �̃− �̃c large enough so that there are actu-
ally two �or more generally, k� paths from one end of the
cylinder to the other on the giant percolation cluster, which
have no edges or vertices in common with one another. We
will assume that the paths are separated by of order W /2 �or
W /k1/�d−1� for k�2� along almost all of their length �again,
this may be an oversimplification, but should not affect the
scaling�. Now on the corresponding tree �which is a subset of
the edges of the cluster�, there is only one path �or trunk�
running from one end to the other. Take the trunk as one of
the two disjoint paths on the cluster. The second path runs
along the tree, but suffers many breaks at edges that are part
of the cluster but not of the tree. The parts of the path that are
edges on the tree lie on side-branches off the trunk, and
typically some of the edges that connect this path to the trunk

were not present at �̃= �̃c−W−1/�perc. If we take this tree and
remove one of these edges, and replace them with the edges
on the cluster that complete the second path, then we have
satisfied the constraint on the tree, and the remainder of
edges of the MST can be added to these two trees without
producing any cycles. Thus we have constructed two trees
that together span the vertices, with two disjoint paths run-
ning from one end to the other, at an increase in cost of order
W� per length W, with �=−1/�perc. Note that, as in the
simple version of the argument, we expect that only of order
one edge �i.e., a fixed number as W→�� must be moved per
length W along the cylinder in order to construct the second
path.

The existence of breaks on the trunk of the MST when the

algorithm stops at �̃ when the tree is not spanning does not
affect the above argument �after all, we can easily ensure that
the second path is disjoint from the whole trunk of the MST�.
The second path that is constructed will also have breaks on

it. These can be filled as �̃ increases further. They become
exponentially rare when W��perc, so that the increase in cost
for moving edges to construct the second trunk will converge
to W� per length W, as claimed. Similarly, the clusters that
encircle one �or more� of the periodic directions of the cyl-

inder when �̃= �̃c−W−1/� are avoided if we go to even smaller

�̃. The total contribution of these events will converge and
still scale as claimed.

The refined version of the argument thus suggests that the
change in cost per unit length is bounded by, and most likely
actually of order of, W�−1 times k- and d- dependent factors,
as claimed earlier,

lim
L→�

�OPT�k� − �OPT

L
� 
k�W

�−1 �50�

as W→�.

C. Scaling at finite size and positive temperature

Our final topic for MSTs will be the combined effects of
small positive temperature and finite size. We again assume
the system is a hypercube of side L with periodic boundary
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conditions. We consider the mean free energy F̄, where F=
−T ln Z, and subtract the nonsingular part, as in the theory of
finite-size scaling for critical phenomena at nonzero tempera-
ture discussed in Sec. III A. The nonsingular part takes the

form Ld��+a�T2+a1�T
3�− �̃c �there is a possibility of terms of

order T2L0 also�. For the singular part F̄sing we have the
scaling form

F̄sing�T,L� = TF�TLyT� �51�

for d�dc=6. Here the exponent yT, the scaling dimension of
T, will turn out to be yT=−�=1/�. The factor of T occurs
because �as mentioned in Sec. II F� it is F /T that scales
similarly to F in the nonzero temperature critical phenomena
case. The scaling function F�x� is a function of the natural
scaling combination x=TL1/�, and scaling is supposed to
hold as T→0 �and L→�� with x fixed. It has the limiting
behavior

F�x� � �xd/yT, as x → � ,

x−1, as x → 0.
� �52�

These two limits reproduce the results of the previous sec-
tions, in the two limits L→� with T fixed, and T→0 with L
fixed, provided yT=−�. We emphasize that at finite L, the
explicit average over the disorder is required, as F itself is
subject to fluctuations in the scaling limit. It should be pos-
sible to describe the statistics of the fluctuations in the sin-
gular part of F by scaling forms with the same exponents,
also. Note that the nonsingular part we subtracted included

the nonsingular subleading �in terms of 1/L� term −�̃c, so
that the scaling function exposes the parts with nontrivial
exponents, such as d� or � in the two limits.

For d	dc, we find some difficulty in obtaining a convinc-
ing scaling form that reproduces the limits in previous sec-
tions. This is due to hyperscaling being violated in the posi-

tive temperature results �F̄�T ,L�sing�LdT4�, but not in the

finite size results �F̄�0,L�−�Ld+ �̃c�L−1/��. Possibly the
problem is due to the singular part of the positive tempera-
ture result not being unambiguously distinguishable from the
analytic behavior, as we have already discussed. Likewise,
the finite-size contribution at T=0 is due to long-range cor-
relation effects, but is an integer power of L�L−2�. It cannot
in principle be distinguished from a nonsingular part of the
same order. Even though we did not find such a term, we did
have to subtract a term of order L0. As we saw in the case of
percolation, above the critical dimension there may be con-
tributions to the free energy that scale in distinct ways. We
suspect that we must write the general form as

F̄sing�T,L� = TF1�TLyT� + TF2�TLyT
*
� . �53�

The functions in this expression have the limiting behavior

F1�x� � �O�xd/yT� , as x → � ,

x−1, as x → 0,
� �54�

and yT=−�=1/�=2 for d�dc=6, while

F2�x� � �xd/yT
*
, as x → � ,

O�x−1� , as x → 0,
� �55�

where yT
* =yTd /dc=d /3 for d�6. �Here, as usual, X=O�Y�

as Z→� means �X /Y� is bounded as Z→�.� Each of the two
previous scaling limits is reproduced by one of these two
functions, while the other is smaller in that limit. In the two
scaling limits of this paragraph, in each of which some com-
bination of T and L is held fixed in the limit, one of the two
functions dominates �and takes a limit form calculated in one
of the previous sections�, while the other �the one that is a
function of the combination held fixed� describes subleading
corrections. A more complete study of this issue would be of
interest.

IV. OTHER OPTIMIZATION PROBLEMS

In this section we consider possible extensions of the re-
sults to other combinatorial optimization problems that have
a geometric flavor. The first one to mention is the minimum
Steiner tree �MStT� problem �2,46�. In its Euclidean version,
there are N “mandatory” points marked in a region �, and
we must find a tree that visits all of them with minimum total
Euclidean length for its edges, similar to the Euclidean MST,
but now it is allowed to have vertices of the tree that are not
mandatory. There is also a version on a graph, in which a
subset of the vertices is mandatory, costs are assigned to the
edges, and a minimum cost tree must be found that visits all
the mandatory points. While the MST can be solved in a time
polynomial in �V� �using, e.g., the greedy algorithm �1��, the
MStT is NP-hard �i.e., the decision version, asking the ques-
tion whether there exists a Steiner tree with cost less than
some given value, is NP-complete �47�� and presumably can-
not be solved in polynomial time. Both optimization prob-
lems produce a tree that �in the random version of the prob-
lem� fills space on large scales �with high probability�, thus
similar connectivity and boundary-condition properties can
be defined. It is plausible that the scaling dimensions for the
MStT are the same as for the MST, including � and � as
defined in this paper. This would be analogous to universality
arguments in statistical mechanics problems such as Ising
spin problems, in which universality classes can be distin-
guished on the basis of the locality and symmetry of the
Hamiltonian and of the type of disorder involved. For geo-
metric problems of the type considered here, there are no
local order parameters �analogous to spins�, but topological
properties such as the connectivity we have used should take
their place.

We can consider coarse-graining methods, which we here
describe schematically. Coarse graining, or renormalization,
is designed to preserve the properties that define universality
classes. If we consider the points within a window of size W
within the sample, then the tree passes through its boundary
at one or more points �with probability approaching 1 as W
increases�. Only the fact that each of these is or is not con-
nected through the interior of the window to each other such
point �for the given window� is relevant to the tree outside.
Thus minimization of the cost over the interior can be per-
formed for each such boundary condition. If the system is
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partitioned into such windows of equal size, then patching
together the windows subsequently, one can minimize the
total cost in stages that are performed locally, at the cost of
storing a large amount of information about the results for
different boundary conditions. The information that needs to
be stored is reduced by coarse-graining, that is assuming that
fine details of the structure will not be important. In particu-
lar, in low dimensions �less than eight �4�� there will typi-
cally be only a finite number of large �size of order W� trees
visible within each window, even for large windows. The
reduced objects can be represented as trees, but with a lower
density of vertices. These are the usual ideas of the renor-
malization group, applied to geometric objects. In general,
the cost for given connections within a window will depend
on the connections in a complicated way, and cannot be ex-
pressed simply as a sum over some “occupied” edges. One
property that should be maintained as coarse-graining pro-
ceeds is that if two disconnected portions are connected, the
cost will increase. Thus the simple form of the cost for the
MST, and the less simple �in terms of the mandatory verti-
ces� form for the MStT, are just two examples, and all mod-
els will become more complicated under coarse-graining
anyway. It is then likely that the universality classes �one for
each dimension d� in which all the �short-range correlated,
d-dimensional� MST problems lie are actually larger and
contain some more general tree-optimization problems.
Hence it is not at all implausible that the MST and MStT are
in the same universality class for each d.

There are also other popular problems, such as the travel-
ing salesman problem �TSP�, and minimum weighted match-
ing. The scaling forms for various quantities given in previ-
ous sections should also apply to these �in their
d-dimensional version�, though the universal numbers, in-
cluding the exponents and critical dimensions, may be dif-
ferent. For the TSP, we can define � from the finite-size
correction to the total cost, say for periodic boundary condi-
tions on a hypercube, as �OPT=�Ld+
�L�+¯. For the TSP,
Rhee �48� raised the question �for d=2� of whether for peri-
odic boundary conditions, in our notation, ��OPT−�L2� /L
→0 as L→�. Our answer to this question would be affirma-
tive. We note that the order one term in �OPT for MST with
periodic boundary conditions can be traced back to the fact
that � is a sum of �V�−1=Ld−1 terms, not �V�=Ld. For the
TSP, � is a sum of exactly �V� terms. Alternatively, we can
define � by considering the change in cost when the tour is
required to travel from one end of a cylinder to the other k
times, as in Ref. �11�.

For the TSP at nonzero temperature, no phase transition is
found in mean-field theory �49�, and so we expect none in
any dimension d. The high-temperature limit of TSP is a sum
over all tours of the graph, and so could be called “uniform
Hamiltonian cycles,” but this is also essentially what is
called dense polymers �self-avoiding walks constricted in
volume�. However, we should caution that uniform Hamil-
tonian cycles on some two-dimensional lattices are known to
be in different universality classes from the more generic
dense polymers; these are called fully packed loop models.
In dense polymers, weak disorder is an irrelevant perturba-
tion, so it is reasonable to imagine that the renormalization
group can flow to the high-temperature fixed point. Given

the absence of a transition at finite nonzero T, we expect that
any positive temperature is relevant, and so that ��0. As-
suming that ��0, there will be a crossover length ��T−�

that diverges as T→0, with again the scaling relation �=
−1/�. We can also try to bound � as in Sec. III B. In the
absence of detailed information, we can still use an argument
similar to the simple bound given there. In particular, in two
dimensions, the tour is equivalent to the boundary of a tree,
so that the argument is really the same, and we conclude
again that ��0. In Ref. �11�, it was assumed that �=0 for
d=2, and some support for this was found numerically.

More speculatively, since the two-dimensional TSP is
equivalent to minimizing a complicated but local cost func-
tion for a tree, the type of coarse-graining arguments outlined
above suggest that �TSP�d=2�=�MST�d=2�=−3/4 �and that
other corresponding exponents also are equal, as suggested
in Ref. �11��. Even if this suggestion is correct, the univer-
sality classes for TSP in dimensions d	2 do not have to join
smoothly with the MST class at d=2. There are actually �at
least� two probability measures for space-filling curves �or
dense polymers� in d=2, depending on whether they are
strictly nonintersecting, or self-intersections are discouraged
but not forbidden �51�. Whether or not TSP is in the same
universality class as dense polymers in any dimension, or for
any subset of its properties, a similar topological distinction
probably holds for TSP �11�. A two-dimensional version of
the TSP that allows the curves to cross can be obtained using
a tour in a three-dimensional slab of small thickness in one
direction, that is large in the two orthogonal directions. On
large scales, this problem is effectively two dimensional, and
the optimum tour projected into these two dimensions will
intersect itself. Such problems will define a distinct univer-
sality class of TSPs from the usual planar �nonself-
intersecting� one. It will be the natural continuation of the
TSP universality class for d	2 to d=2, as in the case of
dense polymers �51,11�. The suggestion in Ref. �11� that the
TSP is in the universality class of dense polymers for d�2
�where the d=2 case means the version with intersections�
implies that the critical dimension is 2, at least for the geo-
metric correlation properties �that is, d=2 is analogous to d
=8 for MSTs �4��. It would be interesting to use the mean-
field approach �49� in finite dimensions to calculate a mean-
field value of � for the TSP for sufficiently high d, and to find
the value of dc for the TSP.

In an interesting paper, Moore �10� applied the idea of �
�which he called y� to combinatorial optimization problems.
He argued that for the TSP, �=1 for all dimensions d. His
argument was based on the analysis of the relative error in a
partitioning algorithm by Karp �50�. Inspection of this analy-
sis shows that the relative error is related to the first bound-
ary term in an expansion for a hypercube with free bound-
aries, �OPT��Ld+�1Ld−1+¯ ��1 has been shown to be
positive �48��. If a large system is partitioned into such
cubes, which are solved separately, then there will be errors
of this form for each cube �50�, which would be absent in a
better scheme. Further, as we have seen, the boundary terms
for the whole system do not scale with exponent �. Accord-
ingly, we do not believe that this is a valid determination of
the value of � for the TSP.

A perfect matching is by definition a subgraph of G that
includes all the vertices of G, such that every vertex is on
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exactly one edge of the matching. In minimum weighted
matching, one must find a perfect matching such that the
cost, which is the sum of the costs of the “occupied” edges
�those on the matching�, is minimized �1,2,46�. The case in
which G is bipartite �there are two sets of vertices U and V,
with �U�= �V�=N, and only edges that connect a member of U
to one of V� is a little easier to solve, and is also known as
the assignment problem. The Euclidean bipartite minimum
matching problem �which is also known as two-sample
matching�, in which the vertices in U�V are distributed, for
example, independently and uniformly over a domain such
as �0,L�d �with N /Ld=1� has the curious property �as quoted
in Ref. �2�� that, at least for two dimensions, the mean opti-
mum cost is of order L2�ln L�1/2. This is not the case for the
unrestricted �nonbipartite� Euclidean problem �2�. Minimum
weight matching occurs �though not with Euclidean distance
as the cost� in finding the ground state of an Ising spin glass
in two dimensions, with free boundary conditions, and also
in other physical problems. Leaving aside cases like the two-
dimensional Euclidean bipartite one that may require special
treatment, we again argue that ��0, on the basis of the
absence of a transition in mean-field theory �52�. There is a
similar picture of positive temperature causing a flow to the
“uniform matchings” problem, also known as “dimer pack-
ing;” in this, the high temperature limit of the partition func-
tion, the sum is over all matchings with equal Boltzmann-
Gibbs weight.

It should not be imagined that ��0 in all combinatorial
optimization problems, even in those that can be solved in
polynomial computation time. The shortest-path problem
�for two given vertices separated by distance L, find the path
between them of lowest total cost, where non-negative ran-
dom costs are assigned independently to each edge of a lat-
tice� is equivalent to the directed polymer problem �see es-
pecially Ref. �53��. The variations in the cost of the optimal
path scale as L�, with �	0 for all dimensions d�1, and �
=1/3 in two dimensions. If the cost is viewed as “time,” then
shortest-path becomes first-passage percolation. Other gener-
alizations of shortest-path have been considered in statistical
physics, including that in which the directed path is replaced
by a d-dimensional surface �e.g., a domain wall� in
d+1-dimensional space, each point of the surface has a
unique projection to the xd+1=0 coordinate hyperplane, and
the cost �or energy� is the sum of random costs assigned to
faces of the lattice occupied by the surface �54�. We will
assume here that the projection of the surface to xd+1=0 is a
d-dimensional hypercube of side L, and that the boundary of
the surface is fixed in the xd+1=0 hyperplane. For d�dc=4,
� takes on the mean-field-like value d−2, when −� is defined
as the scaling dimension for temperature �54�. However, the
leading finite-size correction to �Ld in the mean optimum
cost �ground state energy� involves the disorder, which is

irrelevant for d�4, and hence the correction term is

�Ld−2 /Ld−4=
�L2.

V. CONCLUSION

The central results of this paper concern the behavior of
the correlation length ��T−� as T→0, and the finite size
correction to the optimum cost �L�, with the scaling relation
�=−1/�. We find that �=�perc, the correlation length expo-
nent in classical percolation, for all dimensions d. This result
rests on the identification of the “critical edges” that have
cost close to the percolation threshold, as these edges con-
nect the tree over large scales, and can be replaced by one
another at low change in cost �of order T or L−1/� per edge
for the positive temperature, and finite size situations, re-
spectively�. Although it is sometimes said that there is no
phase transition behavior in optimization, the results pre-
sented here can be understood as a transition occurring right
at T=0.

We used Kruskal’s greedy algorithm in many of the argu-
ments, but the results we obtain are about the MST �or near
optimal, thermally excited trees�, and do not depend on the
algorithm used. Thus this is not an “analysis of an algorithm”
in a traditional sense. There may still be more to be learned
by using other algorithms. It would be interesting to analyze
other problems that possess polynomial-time algorithms �no-
tably, minimum matching� in a similar manner.

The discussion of universality classes, and our sugges-
tions �see also Ref. �11�� that minimum spanning tree, mini-
mum Steiner tree, and even two-dimensional traveling sales-
man problems may be in the same universality class, serves
to illustrate that the universal scaling properties discussed in
this paper may have very little to do with the computational
complexity issues of P versus NP �47�, which seem to de-
pend entirely on details of the definition of the optimization
problem at short length scales �some related observations are
made in Ref. �55��. Possibly this is due to the difference
between the average-case behavior that is analyzed here and
related to universality classes, and the worst-case computa-
tional complexity characterized by P or NP. On the other
hand, the scaling properties may be very useful for under-
standing the effectiveness of algorithmic techniques �such as
local search and randomized algorithms� and approximation
schemes, when they are applied to hard random problems in
d dimensions.
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